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Sound production at the edge of a steady flow 
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The theory initiated by Lighthill (1952) t o  describe the sound radiated by turbu- 
lence embedded in an uniform fluid at  rest is here extended to the case where the 
turbulence exists on the edge of a uniformly moving stream. An exact analogy 
is developed between the distant real sound field and that which would be radi- 
ated by a particular quadrupole distribution adjacent to a vortex sheet positioned 
in the linearly disturbed flow. The equivalent sources in this analogy are quad- 
rupoles identical in strength with those in Lighthill's model, but the quadrupoles 
are now shown to convect with the fluid-particle velocity. There is no amplifying 
effect of shear. The particular case of a plane shear layer is worked out in detail 
for sound waves of scale large in comparison with the shear-layer thickness. 

A downstream zone of silence is predicted as is the formation of highly direc- 
tional beams associated with the interference of sound radiated directly and 
sound reflected from the fluid interface. A distinct structure results in which the 
variation of sound with flow velocity, density and angle is not easily accounted 
for by simple power-law scaling. Finally a comparison is made with some 
features of jet noise; the modelling of the high frequency jet noise problem 
by a single shear layer yields some features consistent with experiment. 

1. A development of the acoustic analogy 
This paper concerns the sound radiated by a source at or near the edge of an 

extensive steady stream embedded in otherwise still fluid. We seek to determine 
the influence of that stream on the radiated sound. The source may be a physical 
inhomogeneity, or turbulence produced at the unstable interface between the 
two regions. That problem models jet noise production in those regions where 
the turbulent mixing layer is thin on the jet scale, as it inevitably is close enough 
to the nozzle exit. 

Sound propagates through the still fluid of density po with sound speed c,, 
according to the linear wave equation 

(1) 

The exact equations of fluid motion are combined in Lighthill's (1952) inhomo- 
geneous wave equation 

02p = a2pIat2 - c: v2p = 0. 

02p = azqlilaxiaxj, (2) 

qj = p"iuiipii-c~(p-p,)6ij. (3) 
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p t j  is the difference between the compressive stress tensor and its mean value in 
the quiescent medium. With this definition Tij is set to be zero in the wave field, 
so that (2) describes how the nonlinear and inhomogeneity-induced terms drive 
the acoustic field in precisely the same manner as a quadrupole distribution would 
drive an ideal acoustic medium a t  rest. Once qj, the quadrupole strength, is 
known, the sound field is known also and once the nonlinear terms are determined, 
so is the wave field that they drive. In  those cases where sound is generated by low 
Mach number turbulence which exists essentially independently of the small 
compressibility effects, the stress tensor can be specified as if the fluid were 
incompressible. Lighthill’s theory then provides a complete description of the 
sound field generated by that turbulence to which sound represents an essentially 
negligible by-product. 

But it is only when the turbulence is slow in the sense that the r.m.s. fluctua- 
tion in Mach number is small and retarded time differences across the eddy 
correlation scale are negligible (the eddy is compact) that the sound can be 
described in this straightforward way. Even slow turbulence, if sufficiently 
extensive, can generate a strong field which must eventually influence the turbu- 
lence stress tensor (Crighton 1969). Neither, as Lighthill explained in his pioneer- 
ing paper, can the stress tensor associated with small regions of sufficiently rapid 
turbulence be specified independently of the sound. When the turbulence is 
neither slow nor compact, the task of specifying the stress tensor acquires much 
of the inevitable complexity of fully nonlinear unsteady compressible flows. 
Crow (1970) voiced a commonly held doubt that the aerodynamic sound problem 
would then admit a ‘cause and effect’ ordering. At high Mach number the sub- 
ject is probably inextricable from that of ‘ compressible turbulence ’. 

But a few situations in which the stress tensor is very extensively distributed 
are tractable. For example, the propagation of sound through turbulence can 
be treated by Lighthill’s method and this has been done by Lighthill (1953), 
Crow (1969) and Ffowcs Williams & Howe (1973). The interaction terms are 
estimated from sound and turbulence which to first order exist independently. 
The scattering sources inevitably contain secular terms that drive the secondary 
waves at  a condition of resonance. These must be treated carefully and recognized 
to reflect the fact that waves travel at a speed slightly different from co when 
nonlinearities are admitted, or when propagating through inhomogeneous 
fluid. The source field has therefore to be described very accurately and this 
is only possible of course in those relatively simple flows that are properly 
understood , 

Nonlinear propagation of a one-dimensional wave can be similarly treated 
as a superposition of a first-order field and secondary waves generated by the 
Lighthill stress tensor estimated from first-order theory (Ffowcs Williams 1973). 
Again the inevitable secular terms arise and have to be treated carefully, which 
they can be only when, as in that problem, the interaction process is very clearly 
and completely defined. 

Lighthill (1952) emphasized that the linearized side of the equation has to be 
chosen to be the correct left-hand side in any ‘extensive ’ region where the waves 
propagate differently from those in the ambient medium at rest. If this is not 
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done, the difficulty of using the Lighthill method is made obvious by considering 
the two identical equations 

and 

a2plat2 - cfV2p = Q 
asplat2 - @V2p = Q + (cf - c2) V2p. 

These equations can both be ‘solved’ to give 

From these identical but apparently radically different expressions it is clear 
that the linear term in the second form must contain important features that 
have to be expressed properly before the solution is evident. The second form is 
in fact an integral equation which has to be solved forp, and this is characteristic- 
ally the way in which propagation effects are modelled in the Lighthill analogy. 

In  our problem we wish to consider the influence on the radiation field of two 
distinct regions with different steady states. In  the Lighthill analogy these could 
again be modelled through extensively distributed linear terms in the stress 
tensor, but we hesitate to try that approach because as we have already said the 
effects are likely to be evident only when a precise description of the stress tensor 
is available. By its nature, turbulence and in all probability turbulence-induced 
sound will never be subject to such a revelation ! 

We expect major changes to arise from these effects and that significant cases 
are not necessarily confined to those where inhomogeneities occur on the direct 
propagation path. For example, a monopole source near the plane interface 
between semi-infinite volumes of light and heavy fluid with identical sound 
speeds radiates preferentially into the light fluid regardless of its location pro- 
vided that it is closer to the interface than a fraction of a wavelength. When the 
density ratio is large, the influence of the light fluid is to transform the field in 
the heavy fluid from monopole to dipole’evenwhen the monopole source is located 
in the heavy medium. 

To bring out major effects such as these we take a more direct approach 
than that of attempting to interpret the influence of subtle linear ‘source’ 
terms. We choose instead to describe the field in terms of sources that are con- 
fined to a small region of space but which are supplemented by linear boundary 
terms. Those terms are distributed over a control surface situated beyond (when 
viewed from the still fluid) the source region according to Curle’s (1955) extension 
of Lighthill’s theory: 

The geometry is indicated in figure 1. H is the Heaviside function equal to unity 
when x lies in the volume V and zero otherwise. The surface S that bounds V 
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Bounding surface S beyond which H=O 

Volume of flow Y 
in which H= 1 

propagating with speed c,, 

Observer a t  x in 

distant wave held 
0 

FIGURE I. Diagram illustrating the relative positions of the turbulent flow, 
the control surface S,  the volume J’ and the distant observation point X. 

may sometimes be made up of many parts, but we shall concentrate later on the 
special case where X comprises the plane x3 = 0. Ix - y] is the distance sepa- 
rating the source point y from an observer a t  x and li are the direction cosines 
of the outward normal from V at X. Square brackets indicate that the function 
they enclose is to be evaluated at  the source position y a t  the retarded time 

Our object now is to eliminate all linear terms from the distributed volume 
source, and to cater especially for the case when the turbulence is formed on a 
thin shear layer on which most of the vorticity is concentrated. Then, as Ljght- 
hill showed, the stress tensor is likely to be dominated by a linear term 

t -  Ix- Yl/% 

a ( P u i q / a t ,  

which is equivalent to the product of the pressure and the mean rate-of-strain 
tensor. We prefer not to regard this type of linear term as known and feel that 
to do so might very well prove misleading for two reasons. First, as it is linear, 
there is no guarantee that i t  is free from secular terms capable of completely 
transforming the general character of the solution. Second, since concentrated 
vorticity tends to move with the fluid particles, large pointwise time derivatives 
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can be induced by relatively steady convection of that vorticity, a process we 
think unlikely to constitute an effective source of sound, but perfectly capable of 
giving confusingly high values to the partial time derivatives of the stress tensor. 
Those derivatives must then actually constitute a higher order and less effective 
source field which integrates to zero in the limit of zero Mach number. 

There is in this subject a clear precedent in which pressure terms initially 
thought to represent the dominant aerodynamic source actually integrate to 
nearly zero. The pressure at  a solid plane surface supporting a turbulent boundary 
layer was for some time thought to constitute a powerful aerodynamic dipole. 
But Powell (1960) showed how, when the issue is examined with adequate care, 
the dipoles are seen to be arranged in a self-cancelling quadrupole array. In  fact 
Powell showed how pressure terms a t  a plane solid surface merely account for 
specular reflexion of the aerodynamic quadrupoles. The arguments used by 
Pfowcs Williams (1965b) to show that the surface pressure generated by turbu- 
lence near a plane cannot constitute anything other than a quadrupole field, 
though developed for a rigid boundary, actually hold true in a more general 
context and apply to any plane homogeneous surface. Such surfaces are equally 
incapable of supporting strong sources. They act as mere reflectors (Ffowcs 
Williams 1965 a).  

Is it possible that the source field identified by Lighthill as being amplified 
by shear and likely to constitute in jets the dominant longitudinal quadrupole 
actually degenerates to an essentially weaker field? We shall show that this is 
indeed the case, and we anticipate the result here by noting that the formal 
limit under which the shear term is selected by Lighthill (1954) as dominant 
is when the mean velocity gradient tends to infinity. Since the shear layer bounds 
a stream of finite velocity, this limit corresponds to a vortex sheet in which 
the source density a(pu,uj)/at = p a8(y) /ay  (when i and j correspond respectively 
to the direction of the stream 0 and its gradient, y )  actually equals the volume 
source term p U,S(y - yo) ,  8, being the velocity difference across the plane shear 
layer centred at yo and S Dirac’s delta function. This limit causes, therefore, the 
volume distribution to collapse into a surface term and Lighthill’s shear-amplified 
source is actually Urn times Curle’s rigid-surface source, the effective vanishing 
of which aroused so much interest in the past. 

To bring out this effect in a specific way, we re-arrange the volume source 
term to express it in terms of Lagrangian time derivatives D/Dt = a/at + uia/axi, 
which cannot receive a misleadingly powerful contribution from the convection 
of concentrated vorticity. We do this by means of the technique described by 
Ffowcs Williams (1966), and write 

G in this expression could actually be any continuous function of space-time, 
but it is sometimes helpful to regard i t  as the generalized instantaneous Doppler 
factor based on the moving fluid particle, 

G = (1 -M, . ) / { (1 -&)2+~2M2} ,  (9) 
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where M = IuI/co, M, = uixi/colxl and e is a similarly arbitrary function which 
we shall initially suppose to be the local turbulence intensity but later set to zero 
everywhere in a more formal identification of the source field as quadrupoles 
moving with the unsteady fluid velocity. 

Equation (8) is now integrated over the volume V a t  the retarded time 
t -  Ix- yl/co. The second term on the right-hand side can then be split into two 
parts, viz. 

= L 1, [ukGT<j] d 2 y - -  l t l F 7  [WGT,] d3y.  (10) 

Inclusion of this identity in the retarded time integral of (8) leads to the following 
relationship between elements of the distant radiation field : 

This can be rewritten when (1 1) is regarded as a reduction formula as 

This equation allows an unambiguous interpretation of the volume source terms 
since there is now no possibility of the apparent source-strength density reaching 
unreasonably high local transient values as strong elements of vorticity (or 
density gradient) are ‘silently’ convected past the point in question. Of course if 
such elements are convected rapidly enough, so that M, = 1, for example, they 
are extremely noisy and the fourth term on the right-hand side of (13) then re- 
emphasizes them. Also, if they are accelerating rapidly enough or the flow is 
locally chaotic and noisy then e2N2  or its time derivative can again be big enough 
to re-emphasize Lighthill’s shear-amplified source as a truly dominant one. 
But often, the theory will be applied to  flows of low Mach number and low 
ljurbulence level where e2M2 6 1 and the only surviving shear-amplified term 
is then extremely weak, weaker in fact than the octupoles discarded by Light- 
hill in arriving a t  his result. 



Xound production at the edge of a steady state 797 

Equation (13 )  now allows (7) to be rewritten in an exact far-field form of 
Curle's equation: 

Now suppose that the volume V contains all the important source terms and 
that the surface X is situated in and lies parallel to the linearly disturbed uniform 
flow in which viscosity is negligible. Only the linear surface terms in (14) need 
then be retained to supplement the volume sources. Also since E is zero on the 
surface G reduces there to (1 - Mr)-l, and 

Equation (14) then simplifies considerably to give 

where, 

G = ( l -M,) /{(1-1Clj)2+~2M2}.  

Equation (15) is an integral equation for the field, the surface integrands both 
being terms linearly related to the density perturbation. 

At low Mach numbers only the first term in T+ need be retained, the others 
being smaller by a factor of order e2M2. But at  high Mach numbers critical layers 
arise (where N, = 1) and then only the second and third terms in (16) need be 
retained. 

The parameter E has been held finite so far to avoid apparently singular con- 
tributions arising from the critical layers where G is infinite if e is zero. Equation 
( 1 6 )  demonstrates that these singularities are easily coped with, the second 
term being the usuaI description of Mach waves which Phillips (1960) showed 
to originate from those critical layers. But the foregoing analysis is equally 
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valid when E is zero everywhere, as we shall now assume it to be, so that T+ can be 
described more compactly and in fact recognized to be the field of a moving 
quadrupole distribution. Once this is done there is no remaining problem with 
singularities at the critical layer for the theory of convected quadrupoles is 
sufficiently general to cope quite easily with arbitrary convection speed. 

On setting E = 0, equation (16) reduces to 

This is actually the field induced by the quadrupole field qj when the source 
elements move with the fluid particles. This can be demonstrated by express- 
ing the distribution in Lagrangian co-ordinates (q, r )  which are related to the 
Eulerian system (y, r )  through the local velocity. When y locates a specific fluid 
particle it is a function o fq  and r determined from the equation 

ayi(q, r)/ar = ui. (18) 

! G ~ ( Y , T )  = qij(q,r).  (19) 

We write the Lagrangian description of the quadrupole field as 

The induced field is given in equation (3.6) of Ffowcs Williams & Hawkings 
(1969) : 

4nc;(p-p0) = 

where r = \x-y(q,r)\ and J is the Jacobian of the transformation from fixed 
to moving axes. Since the axes move with the fluid particles in our case, volume 
elements in the two co-ordinate systems are related through the ratio of the den- 
sity of a fluid particle to the density p * ( y )  = p*(q) of that particle at the time 
when the two co-ordinate systems coincide. The continuity equation can be used 
to evaluate J according to equation (3.8) of Ffowcs Williams & Hawkings’ paper 
to give 

J = p*/p, i.e. p*d% = pd3y. 

In  the far field the gradient operator acts only through the retarded time, so 
that 

and (20) becomes asymptotically as 1x1 -+ 00 

Now, 

so that 

xi x, 
47fc:(p-po) = - 

1x13 

and (23) can be written as 

(23) 
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This equation is now twice integrated by parts with respect to time, 

and re-expressed in its Eulerian form, to give 

which is seen to be identical with (17). The direct radiation field T+ is therefore 
expressible in several forms, the most compact of which is 

This is the field that would be radiated into an unbounded medium at rest by a 
quadrupole distribution Ti moving with the same velocity field as the fluid itself. 

The pressure and velocity perturbations on S are related through the equations 
governing small amplitude motion about the mean state in the excluded region. 
That relation allows (15) to be solved, the general procedure being to recognize 
and exploit a further analogy. 

On S, since l,ui is a small perturbation about the uniform mean velocity that 
lies parallel to S, it can be expressed in terms of $(y ,  t ) ,  the normal displacement 
of a fluid particle from its rest position on S. Now if we assume, without any loss 
of generality, that the uniform stream moves in the x1 direction with speed U,, 
then 

and we can express the surface velocity term in (15) as a function of the particle 
displacement : 

ziui = agat + u, aqax, (29) 

But, 

and as the first term integrates directly to zero and the second term becomes, in 
the far field, 

(32) - 3 3 z/ [5] d2y = - M, 
co 1x1 at s 

equation (30) can be recognized as a familiar term (cf. Gottlieb 1960) in the theory 
of sound generation near vortex sheets : 

The field radiated to large distances is consequently identical with that in an 
analogous vortex-sheet problem, (15) now giving its strength as 

with T+ given by (16), or equivalently (17) or (28). 
The field in the uniformly moving fluid beyond the surface X is a linear sound 

field where p is determined on S once 5 is specified together with a radiation 
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or finiteness condition. Further, since the field radiated into the static fluid is 
determined once p is a known function of <, the analogy is clear. A n  example 
illustrating the principle that the inter-relation between surface terms determines 
the field is given by Pfowcs Williams (1965a).  

We have then proved that the sound field radiated by turbulence formed at  
the edge of a stream mixing with its environment is identical with that generated 
in a much simpler model problem. This is obvious when it is appreciated that 
(34) also represents the field that would be radiated to the particular distant point 
x by the quadrupole field T,. were it being convected with the actual fluid par- 
ticles but radiating into homogeneous fluid a t  rest in V .  In the analogy, that 
fluid is bounded by a vortex sheet at  S beyond which there is a weakly per- 
turbed fluid motion, the particle displacement and pressure being held continuous 
across S. The dependence of p on 5, and not their individual values, determines 
the sound. That dependence is imposed entirely by the uniformly moving stream 
beyond S in both the real and analogous vortex-sheet problems. 

Given a description of the turbulence, and hence T,, the integral equation (34) 
can in general be solved through this analogy with the vortex-sheet problem, 
and for that solution the vortex-sheet instabilities are irrelevant because the 
problem we have treated exactly always has a bounded solution. The analogy 
does not describe the field in the vicinity of the vortex sheet, and so the detailed 
local source conditions, which together with causality constraints on an actual 
vortex sheet usually require exponential growth, are quite different in the real 
and analogous problems. The real problem calls for compliance with a distant 
radiation condition both within and exterior to the moving fluid. It also requires 
finiteness everywhere and as Jones & Morgan (1972) have pointed out, local 
causality must then be violated in the model problem. But this is of no concern 
in our analogy, which is quite incapable of interpretation within the source 
region, where the physical contradiction would occur were the problem actually 
one of an excited unstable vortex sheet. 

The analogy between the actual field and that generated by the convected 
quadrupoles interacting with a vortex sheet is exact irrespective of the location 
of that sheet provided that it lies in and parallel to the linearly disturbed, other- 
wise uniformly moving fluid. There is clearly some scope for ambiguous inter- 
pretation of this result, a point that again serves to emphasize the major role 
played by linear elements of Lighthill’s stress tensor whenever they are dis- 
tributed over an extensive field. By placing the surface deep inside the moving 
fluid, the source field has such an extensive linear distribution, which must repre- 
sent the difference between the response of a nearby and a distant vortex sheet. 
The interpretation is straightforward only when the surface can be positioned 
close enough to the real source field that an insufficient volume of linearly dis- 
turbed moving fluid exists within V to contribute any significant effect. That is 
the case when the surface is positioned at  a distance from the source small com- 
pared with a wavelength. Then, too, phase differences between those directly 
radiating elements and those represented by the vortex-sheet response are 
negligible and the field can be evaluated without paying close attention to varia- 
tions of retarded time. This analogy is therefore expected to be most useful at 
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d Souitd propagating from shear 
layer into moving streain 

Surface S positioned in linearly 
disturbed fluid 

H= 1 c 

Turbulent interface 

Sound propagating from shear 
layer to the distant observer at 

1 x ill the acoustic medium a t  rest 

FIGURE 2. Illustration of the geometry in the special problem of a plane 
turbulent shear layer. 

low Mach numbers when the acoustic wavelength is long on the source scale, 
though a t  higher Mach numbers, just like Lighthill's analogy, on which it rests, 
it remains formally exact. 

2. The pIane shear layer 

because we choose a straightforward geometry. The plane S is the surface 

The fluid of density p, in x, > 0 moves in the x, direction with uniform speed U, 
apart from linear perturbations driven from x, < 0; see figure 2. 

The velocity and pressure integrals in (15) can be related very simply if we 
represent the field variables by their space-time Fourier transforms, viz., 

The scheme of solution can be simplified in the particular case we now treat 

x3 = 0, 1, = 1, 1, = 1, = 0. 

Is [p] d2y = Is [ / / p ( y 3 ,  k, w )  eiQ.JT+Wt)dzkdw d2y 1 (35) 

The asymptotic value of the retarded time has been chosen; it has the required 
degree of accuracy in the distant radiation field. The y surface integration yields 
a delta function that allows the k surface integral to be evaluated trivially, so 

5 1  F L M  66 
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Now p(y3,k,o) satisfies the convective form of the Helmholtz equation in 
y3 > 0: 

(38) 

(39) 

p(y3,k,u) = ~ l ~ ~ , ~ , ~ ) ~ ~ p ( - ~ ( ( ~ + ~ ~ ~ ~ ~ ) ~ - c ~ ( ~ ~ + k ~ ) ) ~ y , / c , }  (40) 

{ a p t  + coolc~a~axl~2p - c; v2p = 0, co M = u, ; 
(c21a2/ayz + (o + ~ ~ l M k , ) ~ -  c;(k; + k3)p(y3, k, w )  = 0, 

is the solution complying with the radiation condition, so that 

The linearized momentum equation in the uniform flow is 

Consequently, 

where Mr = Mxl/JxJ, and (37) can be written to relate the pressure and velocity 
terms in a specific way: 

If the radical is imaginary, (44) is of course not valid and (43) must be used instead. 
But the imaginary number is simply an indication that the pressure and velocity 
terms are 90” out of phase and as long as they are treated accordiiigly, we may 
continue to use (44), which has the advantage of giving a ‘broad band’ result 
but the disadvantage that it is then impossible to specify the 90” phase shift in 
a straightforward manner. With this expression (15) is solved. When the observa- 
tion point x is in the still fluid the equation amounts t o  

and when x is outside V a t  the position of the specuIar image in the plane x3 = 0, 
i.e. when x = (x1,x2, -x3 ) ,  then (15) is 



Xound production at the edge of a steady flow 803 

where T- is written for the field that would be radiated to (xl, x2, - x3) by the 
convected quadrupoles in V were they to exist in an unbounded homogeneous 
fluid at rest. The linear surface term can then be eliminated to give 

Thus, as we have already stated, the effect of the mean flow and density change 
is compactly represented in this equivalence of the actual field with that which 
would be radiated by the convected quadrupoles were they adjacent to a plane of 
discontinuity a t  x3 = 0 separating the poco still fluid from the moving plcl fluid. 
R, the reflexion coefficient for that problem, was found by Miles (1956) to be that 
given above. 

Parametric form of the radiated Jield 

The mean flow interference effects are only straightforward in certain particular 
cases, one of which being the long-wave limit where the turbulent interface 
between the moving and still fluid is thin on the wavelength scale. Then the image 
sources can be assumed, when viewed from afar, coincident with the real sources 
and the phase change arising from their small separation neglected. 

The magnitude of the radiation field is then obtained very simply from (47), 
being 

for longitudinal quadrupoles (Tll, T2, and T33) and the (I ,  2 )  lateral quadrupoles, 
where the field is symmetric about any x3 = 0 quadrupole axis, and 

depending on the type of quadrupole, for the field of the lateral quadrupoles, 
Tl3, T23, etc., which are antisymmetric about their x3 = 0 axes, their specular 
images then opposing the direct field. f(x/lxl) is a product of direction cosines 
which we set equal to unity in what follows. These expressions hold whether R 
is real or complex. The phase quadrature effect signified by a complex reflexion 
coefficient is properly accounted for. 

The most striking single feature of this theory is the impossibility of aero- 
dynamic sound propagation parallel to the plane of the mixing layer. There 
~"1x1 is zero, and R is - 1.  Only longitudinal quadrupoles radiate in the down- 
stream direction and their field is annihilated by that of their images. Quali- 
tatively the streamwise zone of silence so produced might be thought of as 
a refractive effect. However, it emerges in this long-wavelength model as a 
destructive interference between two terms, one the direct field and the other 
that scattered off the moving medium. The interference is complete in the plane 
of the vortex sheet. 

51-2 
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Whenever the turbulence level is a small fraction of the local meanvelocity then 
to first order the quadrupoles can be assumed to be in uniform motion. One of the 
least restrictive derivations of the parametric field dependence for that situation 
is given by Ffowcs Williams (1969); provided that the various turbulence 
correlations can be scaled into an isotropic form, then 

= K(po + p1)2 U;ADp5, 

D = {( 1 - 0*7.~%$)~ + a2M: + P2(M2 - @:))$. 

(51) 

where K is a constant and D is the generalized Doppler factor: 

(52) 

This is the form of the Reynolds-stress-driven field on a shear layer separating 
still po fluid from a stream of density p1 moving a t  speed U, = c,M. This para- 
metric form depends on the existence of a definite turbulence length scale A* 
and presupposes that the principal shear-layer sources are moving downstream 
at 0.7 times the speed of the primary jet flow. The constant a is the ratio of the 
eddy longitudinal length scale to the distance travelled by that eddy during its 
coherent life (a2 is probably about 0.3), and /3 is the transverse eddy scale divided 
by the distance travelled by the eddy (p2 is probably of the order of 0.03). 

The parametric form of T2, may well be quite different in regions of really 
intense turbulence where the unsteady elements of D( 1 -M,)-l/Dt are as signifi- 
cant as unsteady parts of Ti j .  Also, when non-isentropic effects are large there is 
a quite different basic dependence on velocity, the fourth power of velocity 
taking over from the basic eighth-power law and that in turn being subject to 
multiplication by the [ 1 + Ri2 of (49). But we do not consider those ideas in any 
detail as we now restrict our study to the straightforward case of relatively low 
turbulence level when (49)-(51) describe the radiation field. Also we limit our 
attention to gases with a common ratio of specific heats so that the product pc2 
is invariant in the constant pressure mean flows. 

Figures 3(a)-(c) show various plots of (49) when x2. = 0, in polar form. The 
decibel sound level, which is essentially lOlog,, of equation (49) is plotted as a 
function of the angle to the flow direction. The scale is referenced to a convenient 
but arbitrary datum. The three sets of curves depict the directionality and rela- 
tive magnitude of the field a t  several distinct values of the mean flow velocity 
coM and density ratio po/pl. These curves bear a close similarity to those given by 
Gottlieb (1960) for the radiation from a fixed point source adjacent to a vortex 
sheet. In  fact it is the properties of the vortex-sheet model that dominate the 
field as can be seen from figures 4(a)-(c), which show the various elements of 
(49) plotted separately and then superimposed. is plotted first in decibel 
form, for a mean flow velocity of 2 . 5 ~ ~  and density of 0-5p0. Then in figure 4 ( b )  
11 + RI2 is plotted, again in decibel form, for the same flow conditions. Figure 4 ( c )  
shows the composite field that represents the radiation from convected shear- 
layer turbulence, one of the curves in figure 3 ( b )  being the sum of the decibel 
values in figures 4(a) and (b).  

Figure 5is a polar diagram for the field of lateral quadrupoles that are antisym- 
metric about x3 = 0, which is represented by (50); again xp is set equal to zero. 
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FIGURES 3(a ,  a). For legend see next page. 
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Flow direction 

FIGURE 3. Polar diagrams of the sound radiated by turbulence at the edge of a steady 
stream. (a )  po/pl = 1.0. ( b )  po/pl = 2.0. (c )  po/pl = 4.0. On this and similar figures each interval 
on the ordinate represents 10db. 

Flow direction 

FIGURE 4(a). For legend see next page. 

These figures all indicate that the presence of the mean flow influences the 
generation and possibly the propagation of sound in a very dramatic manner. The 
basic turbulence was assumed devoid of any distinct structure, as was the sound 
field it would radiate into a homogeneous environment at  rest. But the mean 
flow imposes a structure de-emphasizing somewhat the convection-induced 
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FIGURE 4. Polar diagrams for (a )  q, ( b )  ll+R12 
and (c) composite field. po/pl = 2.  

Mach-wave beam and inducing its own directional peaks and troughs, which 
include the zone of silence in the source plane x3 = 0. The mean flow effects 
change significantly as the flow velocity is increased, the most dramatic changes 
being in the rear arc close to the direction of flow. Figures 6 (a)-(e) show this effect, 
giving the decibel value of the sound field according to (49) as a function of the 
flow velocity c,M for several angles tan-I ( - z,/xl) to the jet direction for various 
density ratios. Figure 7 shows the way in which the sound varies with jet velocity 
at 45' t o  the flow direction when the mean flow interaction effects are neglected. 
This is given by equation (51). The troughs in the curves a t  angles within 90" 
of the flow direction correspond to the condition R = - 1, which occurs when the 
phase velocity of the acoustic waves has a component in the direction of flow 
that is exactly equal to the flow velocity. The flow cannot sustain any such 
'static pressure' wave and therefore acts as a pressure release boundary. This 
effect is evidently capable of negating most of the convective amplification effect. 
The details depend on the density ratio across the shear layer, and these are 
depicted in the next figures. 
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FIGURE 5 .  Polar diagram of the field of lateral quadrupoles according t o  (50). 
P o l A  = 2.0. 
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FIGURE 6 ( a ) .  For legend see p. 810. 
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FIGURES 6 ( b ,  c). For legend see next page. 
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FIGURE 6. Curves showing the sound radiated from turbulence a t  the edge of a steady 
stream. x2 = 0. ( a )  x1 = -x8cot 30". ( b )  x1 = -zr,cot 60". (c) x1 = -x,cot75°. (d )  = 0. 
( e )  x1 = -x3 cot 150". 
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FIGURE 7. Diagram for E .  8 = 45". 

The variation of sound with density ratio is shown in figures 8 (a )  and ( 6 )  for 
three velocity conditions at  30" and 90" to the direction of flow. The variation at  
other angles differs only in detail. From the figures it is clear that the dependence 
of the sound on density is not expressible by any simple power law but there is a 
distinct tendency for the sound to fall more rapidly with flow density at  low angles 
than it does a t  high angles, particularly when the flow velocity is close to c,,. 

Relevance of the model to jet  noise 

The convective form of Lighthill's acoustic analogy has found widespread 
application to jet noise problems and is known to explain many of the experi- 
mentally observed features in situations of great practical importance (Lighthill 
1962). But there are aspects of the jet noise problems which run contrary to 
that form of the analogy, the most significant being that the high frequency 
noise does not seem able to propagate at  angles close to the jet axis and seems 
virtually devoid of convective amplification effects. Lush (1 971) has published 
a systematic study of this effect, which has been known for some time and 
attributed to refractive effects of the mean jet velocity and temperature field, 
cf. Ribner (1964). Schubert (1969) studied the problem numerically, showing 
agreement with ray theory a t  high frequencies and a t  lower frequencies con- 
firming that flow interaction effects were responsible for the zone of relative 
silence along the jet axis. His computations showed good agreement with the 
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FIGURE 8. Curves showing the sensitivity of sound radiated at the edge of a steady 
stream to density changes. 2, = 0. ( a )  rl = -z3 cot 30'. ( b )  zl = 0. 

experimental results of Atvars et al. (1965) and Grande (1966). It is the high 
frequency sound that is most affected by this mean flow interaction, sound that 
radiates in a relatively omnidirectional manner around the jet axis, a t  least when 
compared with the predictions of the convective quadrupole model, with a distinct 
zone of silence close to the jet axis. This current model may well have relevance 
to that aspect since the high frequency sound is generated by the early thin 
shear layers bounding a relatively deep uniform-velocity jet core. At least at low 
Mach numbers, the shear layer must be thin on the wavelength scale, and for 
sufficiently thin shear layers, the wavelength will be small on the scale of the 
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FIGURE 9. Polar diagram of the sound radiated by turbulence at the edge 
of a steady stream. po/pl = 12.2. 

jet diameter. That high frequency sound should therefore be described by the 
foregoing model, which treats the problem in the opposite limit to that described 
by ray theory. The model is applicable if the shear layer is sufficiently thin that 
the wavelength of the sound it produces, though large on the shear-layer scale, 
is none the less much smaller than the jet diameter. The zone of silence close to 
the flow direction is certainly consistent with this model, but the strong beams 
and troughs depicted in the foregoing figures are not generally recognized 
aspects of the jet noise problem. On the other hand highly directional sound is 
known to originate from the early shear layers of high-speed jets. Lowson & 
Ollerhead (1968) published shadowgraph pictures of a strong beam of sound 
and Tam (1971), by analysing the motion of the developing shear layer, showed 
the waves to be a characteristic feature of the single interface between the en- 
vironment and a uniform jet stream. That beam should therefore be a feature of 
our model also. Figure 9 shows the sound level as a function of the angle to the 
flow direction in a polar diagram of the values predicted by (49) for the jet con- 
ditions illustrated in figure 7 of Tam's paper. Tam computed the beam angle to 
be 56" to the jet axis and this compared well with the 54" measured in the experi- 
ment. Our model also predicts a beam at the observed value, but in addition 
there is the prediction of a stronger beam at about 80" to the jet axis, right at 
the boundary of the zone of silence according to ray theory, and that is not 
evident in the experiment. 

Figure 10 (plate 1) reproduces a photograph taken by Westley at the National 
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FIGURE 11. Polar diagram of the sound radiated by turbulence at  the edge 
of a steady stream. po/po = 16.9. 

Research Council in Canada with a helium jet discharging into air at  a pressure 
ratio of 4. The jet is small, having a nozzle diameter of 0*04in., and the discreet 
wave system it generates is probably unique to flows of relatively low Reynolds 
number of this type. Figure 11 is the polar diagram of a single-shear-layer 
aerodynamic source according to (49) at the flow conditions of Westley’s jet. 
Again there is a broad beam a t  about the angle of that observed experimentally, 
but, again too there is a stronger beam, at  the edge of the zone of silence. This is 
not observed. 

These conditions are ones where there is no variation of the sound field within 
the flow with distance from the interface layer, and there may be good reasons 
then why our single-layer model fails to explain the field of a double-layer jet. 
It might do so if there were some artificial stimulus to ensure a coherent interior 
field. An upstream acoustic source might do that, though of course the directly 
transmitted sound would mask to some extent the sound created by the shear- 
layer eddies. 

Such an experiment has been performed using the shallow-water analogy 
where the sound is modelled by surface waves. Figure 12 (plate 2) is a photograph 
taken at  a mean flow speed of 0 . 9 ~ ~  with upstream acoustic ‘seeding ’ of the jet 
motion. This experiment illustrates the beam in the vicinity of the angle pre- 
dicted by this model, the conditions being very close to the M = 1.0 case shown 
in figure 3 (a) .  The beam is also at  the angle bordering the zone of silence according 
to ray theory, so that one cannot determine from the photograph whether the 
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beam is a simple ray or the emission generated a t  the shear layer provoked by the 
upstream source. 

In  conclusion therefore the model problem described in this paper might be 
quite pertinent to the high frequency sound waves generated by the thin initial 
jet mixing layers, but some of the strong directional features predicted by the 
model are yet to be confirmed by direct experiment. The analysis is easily ex- 
tended to account for a double shear layer and that should improve the relevance 
of the model in jet noise applications. That extension is now nearing completion 
by Dr R. Dash. 

This work arose out of a need to justify a procedure by which Dr R.Dash 
and myself had previously modelled mean flow effects on jet noise through 
vortex-sheet problems. That work will be reported in detail by Dr Dash. I 
am indebted to Mrs J. Broadway for conducting the numerical computations, 
to Sir James Lighthill for many helpful comments and Sir Stanley Hooker for 
stimulating a more penetrating analysis of the high-speed jet noise problem. 
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FIGURE 10. Photograph of highly directional waves taken by Westlcy with a 
0.04 in. diameter helium jot  at  a prossure ratio of 4. 
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FIGURE 12. Shallow-water simulation of je t  noise, showing a highly directional beam 
‘ seeded’ by upstroam sound. The jot is issuing at  a s p e d  0 . 9 ~ ~ .  
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